Abstract

Hydrogen production by water-splitting has limited commercial application as substantial amount of energy is required for the favorable kinetics of the process. We present an interface engineering strategy for constructing a bifunctional electrode material for an efficient water splitting process. Designed cadmium sulphide and Prussian blue nanorods (CdS-NRs@PBNPs) heterostructures acts as bifunctional electrocatalyst improved water splitting performance, for both HER and OER. For HER, the optimized hybrid CdS-NRs@PBNPs (1:1) showed significantly a low overpotentials of 126 mV and 181 mV at current densities of 10 mA cm−2 and 20 mA cm−2 respectively. For OER it displays an overpotential of 250 mV and 316 mV at current densities of 10 mA cm−2 and 20 mA cm−2. Additionally, the CdS-NRs@PBNPs (1:1) has demonstrated long-term stability. The hybrid's enhanced OER and HER activity is attributable to a synergetic impact between CdS-NRs and PBNPs, as well as the active site modification due to the presence of Cadmium and iron in the hybrid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call