Abstract

ABSTRACT Barley seedlings (Hordeum vulgare L., cv. ‘Obzor’) were exposed for 5 d to 0, 5, 50, and 500 μM CdCl2 in nutrient solution. Cadmium (Cd) treatment caused a reduction of plant length, biomass, and leaf pigment content. The level of soluble leaf proteins was not changed significantly. SDS-PAGE revealed a slight diminution of Rubisco subunits and the appearance of a new low molecular mass band after exposure to 50 or 500 μM Cd. The antioxidative protection in leaves under Cd toxicity was studied in its complexity. Slightly diminished superoxide dismutase, enhanced catalase, and drastically increased total peroxidase activities were found at the highest Cd level. Ascorbate peroxidase activity was not changed significantly. The isoenzyme patterns of the antioxidant enzymes under study were only slightly altered without synthesis of new isoforms. The content of oxidized ascorbate increased during exposure to 50 and 500 μM Cd. The level of H2O2 rose only at 500 μM Cd without accumulation of malondialdehyde and oxidized proteins. Non-protein thiol groups increased up to four-fold after exposure to 50 and 500 μM Cd. The results are in accordance with the induction of mechanisms allowing an immobilization and sequestration of Cd in barley leaves, and suggest only minor effects via oxidative damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call