Abstract

Summary Glutathione (GSH) plays an important role in protecting plants from environmental stresses like oxidative stress and xenobiotics. Glutathione-derived peptides are involved in heavy metal detoxification in plants and fungi. Terrestrial and aquatic bryophytes were investigated for their biochemical response to heavy metals. The GSH pool increased significantly in the first two days after supply of 100 μmol/L Cd(II). PCs were not detected. Cd(II) also induced the enhancement of the GSH pool in the water moss Fontinalis antipyretica. Cysteine and γ-glutamyl-cysteine also increased during Cd(II) treatment, but remained on a lower level. Uptake experiments with Cd(II) showed a fast regulation of equilibrium between the Cd(II) content of the medium and the plant surface, followed by a slow migration of Cd(II) to intracellular sites. The main storage compartment of heavy metals in Fontinalis are the vacuoles, where they are precipitated as phosphates. In the cytoplasm, the S-content increased during Cd(II) exposition. EEL-spectra indicate that in the cytoplasm, Cd(II) is chelated by SH-groups. All findings support the idea that in the investigated moss species, GSH plays an essential role in heavy metal detoxification during the transport of the metals through the cytoplasm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.