Abstract

Cadmium poses a serious environmental threat in aquatic ecosystems but the mechanisms of its toxicity remain unclear. The purpose of this work was first to determine whether cadmium induced apoptosis in trout hepatocytes, second to determine whether or not reactive oxygen species (ROS) were involved in cadmium-induced apoptosis and genotoxicity. Hepatocytes exposed to increasing cadmium concentrations (in the range of 1–10 μM) showed a molecular hallmark of apoptosis which is the fragmentation of the nuclear DNA into oligonucleosomal-length fragments, resulting from an activation of endogenous endonucleases and recognized as a ‘DNA ladder’ on conventional agarose gel electrophoresis. Exposure of hepatocytes to cadmium led clearly to the DEVD-dependent protease activation, acting upstream from the endonucleases and considered as central mediators of apoptosis. DNA strand breaks in cadmium-treated trout hepatocytes was assessed using the comet assay, a rapid and sensitive single-cell gel electrophoresis technique used to detect DNA primary damage in individual cells. Simultaneous treatment of trout hepatocytes with cadmium and the nitroxide radical TEMPO used as a ROS scavenger, reduced significantly DNA fragmentation, DEVD-related protease activity and DNA strand breaks formation. These results lead to a working hypothesis that cadmium-induced apoptosis and DNA strand breaks in trout hepatocytes are partially triggered by the generation of ROS. Additional studies are required for proposing a mechanistic model of cadmium-induced apoptosis and genotoxicity in trout liver cells, in underlying the balance between DNA damage and cellular defence systems in fish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.