Abstract
The toxic metal cadmium is linked to a series of degenerative disorders in humans, in which Cd-induced programmed cell death (apoptosis) may play a role. The yeast, Saccharomyces cerevisiae, provides a valuable model for elucidating apoptosis mechanisms, and this study extends that capability to Cd-induced apoptosis. We demonstrate that S. cerevisiae undergoes a glucose-dependent, programmed cell death in response to low cadmium concentrations, which is initiated within the first hour of Cd exposure. The response was associated with induction of the yeast caspase, Yca1p, and was abolished in a yca1Delta mutant. Cadmium-dependent apoptosis was also suppressed in a gsh1Delta mutant, indicating a requirement for glutathione. Other apoptotic markers, including sub-G(1) DNA fragmentation and hyper-polarization of mitochondrial membranes, were also evident among Cd-exposed cells. These responses were not distributed uniformly throughout the cell population, but were restricted to a subset of cells. This apoptotic subpopulation also exhibited markedly elevated levels of intracellular reactive oxygen species (ROS). The heightened ROS levels alone were not sufficient to induce apoptosis. These findings highlight several new perspectives to the mechanism of Cd-dependent apoptosis and its phenotypic heterogeneity, while opening up future analyses to the power of the yeast model system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.