Abstract
In vivo oxygen evolution above single stomata in Brassica juncea has been used to investigate, for the first time, the effect of Cd-induced stress as imaged by scanning electrochemical microscopy (SECM). SECM images showed a clear stomatal structure-a pore, whose aperture is modulated by two guard cells, serving as the conduit for the oxygen produced. Lower stomatal density and larger stoma size were found in plants treated with 0.2 mM CdCl2 compared with control plants. Either the introduction of Cd caused a slower cell replication in the plane of the epidermis, hence fewer stomata, and/or the number of open stomata was reduced when plants were under Cd-stress. Oxygen evolution above individual stomatal complexes in Cd-treated plants was lower than that from control plants, as determined from the electrochemical current above the middle of each stoma. All guard cells under illumination were swollen, indicating that the stomata were open in both control and treated plants. Thus, decreased oxygen evolution in response to Cd cannot be attributed to simple closing of the stomata, but to a lower photosynthetic yield. SECM provides an excellent tool for monitoring the effects of Cd on photosynthetic activity at the scale of individual stomata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.