Abstract

The present study deals with the growth, photosynthesis, oxidative stress and heavy metal accumulation ability of Nostoc muscorum exposed to different levels (2, 4, 8, 16, 20 μM) of cadmium (Cd) concentrations. Growth and photosynthetic pigments i.e., chlorophyll a, carotenoids and phycocyanin were significantly affected by cadmium exposure and inhibition was found to be dose dependent. 14C-fixation appeared to be more sensitive to Cd than whole cell oxygen evolution. Significant accumulation of Cd in the cells of N. muscorum was noticed after 1 and 2 h of exposure and the accumulation rate was dose and time dependent. Furthermore, the levels of superoxide radicals and hydrogen peroxide (H2O2) were found significantly increased by cadmium exposure which in turn accelerated the formation of malondialdehyde (MDA) content, and protein and DNA damage. The selected dose of Cd (20 μM) showed the induction of new polypeptide of ~23.24 kD and the loss of ~37.84 kD and ~69.63 kD whereas the remaining bands were inhibited as compared to control. Significant DNA fragmentation which is a hallmark of programmed cell death (PCD) was also observed in the cells treated with 20 μM of Cd for 48 h. The decrease in proline and total phenol content at 8 and 16 μM suggest that the cells of N. muscorum were not able to mitigate the oxidative stress induced by cadmium exposure. Similarly, the decreased activities of antioxidant enzymes i.e., superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) also indicates the failure of the antioxidant defense system of N. muscorum to survive at higher concentration (8 and 16 μM) of cadmium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call