Abstract

Our study examined the role of oxidative stress and aberrant gene expression in malignant transformation induced by chronic, low-level cadmium exposure in non-tumorigenic rat liver epithelial cell line, TRL 1215. Cells were cultured in 1.0 microM cadmium (as CdCl(2)) for up to 28 weeks and compared to passage-matched control cells. The level of cadmium used for transformation produced no evidence of increased superoxide (O(2) (-*.)) or hydrogen peroxide (H(2)O(2)) levels in the early stages of exposure (</=24 hr). The chronic cadmium exposed liver epithelial cells (CCE-LE) were hyperproliferative with a growth rate about 3-fold higher than control cells. CCE-LE cells produced highly aggressive tumors upon inoculation into mice confirming malignant transformation. Analysis of cellular reactive oxygen species (ROS) showed that CCE-LE cells possessed markedly lower basal levels of intracellular O(2) (-*.)and H(2)O(2) and were very tolerant to high-dose (50 microM) cadmium-induced ROS. Time course studies showed the production of ROS by high-dose cadmium was abolished well in advance of malignant transformation. In contrast, marked overexpression of the oncogenes c-myc and c-jun occurred in transformed CCE-LE cells as evidenced by up to 10-fold increases in both transcript and protein. A significant increase in DNA-binding activity of the transcription factors AP-1 and NF-kappaB occurred in CCE-LE cells. Increases in oncogene expression and transcription factor activity occurred concurrently with malignant transformation. Thus, cadmium-induced ROS occurs as an early, high-dose event but is abolished well in advance of malignant transformation. Low-level chronic cadmium triggers oncogene overexpression possibly by altering critical transcription factor activity. Such changes in cellular gene expression likely culminate in the loss of growth control and cadmium-induced neoplastic transformation in CCE-LE cells, whereas generation of ROS by cadmium seemed to play a minimal role in this transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call