Abstract

Reaction between CdX2 and 1-alkyl-2-(phenylazo)imidazole (RaaiR') has isolated complexes of composition Cd(RaaiR')2X2 in MeOH or MeCN. Crystallization of Cd(RaaiR')2I2 from N,N-dimethylformamide (DMF) has separated [Cd(RaaiR')I2.DMF], while Cd(RaaiR')2X2 (X = Cl and Br) remains unchanged in its composition upon crystallization under identical conditions. The structure has been established by spectral (UV-vis and 1H NMR) data and confirmation in the latter case by a single-crystal X-ray diffraction study of [Cd(TaiMe)I2.DMF] [where TaiMe = 1-methyl-2-(p-tolylazo)imidazole]. UV-light irradiation in a MeCN solution of Cd(RaaiR')2I2 and [Cd(RaaiR')I2.DMF] shows trans-to-cis isomerization of coordinated azoimidazole. The reverse transformation, cis-to-trans, is very slow with visible light irradiation. Quantum yields (phit-->c) of trans-to-cis isomerization are calculated, and the free ligand shows higher phi values than their cadmium(II) iodo complexes. The cis-to-trans isomerization is a thermally induced process. The activation energy (Ea) of cis-to-trans isomerization is calculated by a controlled-temperature experiment. The effects of the anions (Cl-, Br-, I-, and ClO4-) and the number of coordinated azoimidazoles (RaaiR') [Cd(RaaiR') or Cd(RaaiR')2] on the rate and quantum yields of photochromism are established in this work. A slow rate of photoisomerization of [Cd(RaaiR')4](ClO4)2 compared to Cd(RaaiR')I2 or Cd(RaaiR')2X2 may be associated with the increased mass and rotor volume of the complexes. The rate of isomerization is also dependent on the nature of X and follows the sequence Cd(RaaiR')2Cl2 < Cd(RaaiR')2Br2 < Cd(RaaiR')2I2. It may be related to the size and electronegativity of halide, which reduces the effective molar association in the order of I < Br < Cl and hence the rate. Gaussian 03 calculations of representative complexes and free ligands are used to explain the difference in the rates and quantum yields of photoisomerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.