Abstract

Cadmium (Cd) is a type of toxic metal, in most cases, coming from fuel burning and aquatic plants. The cells of organisms can be caused serious damage, including pyroptosis, exposure to low concentrations of Cd in long-term. Pyroptosis is a recently discovered Caspase-1-mediated cell death. In this study, lymphocytes were extracted from the pronephros and spleens in carps, respectively. After treating cells with low concentration of Cd, the mRNA and protein expression levels of pyroptosis-related genes, NLRP3, Caspase-1, and pro-inflammatory cytokines, increased obviously. And the content of reactive oxygen species (ROS) and mitochondria reactive oxygen species (mtROS) increased significantly, we also found the activities of CAT, GSH-px and T-SOD reduce significantly, and the content of MDA have a clear upward trend. We then added NLRP3 inhibitor, Glyburide, to the Cd-treated group, further confirming that NLRP3 is a key gene in pyroptosis pathways by detecting the mRNA and protein expression levels. Besides, the rupture of the cell membrane was also confirmed by Hoechst/PI double staining, red fluorescence increased obviously in the Cd treatment group. The experiment revealed that Cd exposure induces pyroptosis of lymphocytes in carp pronephros and spleens by activating NLRP3. Inhibition of NLRP3 activity can slow down the degree of lymphocytes pyroptosis. Thus, the above information provides a new avenue toward understanding the partial mechanism of Cd exposure-induced pyroptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call