Abstract

Cadmium is a significant environmental pollutant that poses a substantial health hazard to humans due to its propensity to accumulate in the body and resist excretion. We have a comprehensive understanding of the damage caused by Cd exposure and the mechanisms of tolerance, however, the intricate mechanisms underlying multigenerational effects resulting from Cd exposure remain poorly understood. In this study, Caenorhabditis elegans were used as a model organism to investigate Cd-induced multigenerational effects and its association with epigenetic modifications. The results showed that Cd exposure leads to an increase in germ cell apoptosis and a decrease in fertility, which can be passed down to subsequent generations. Further analysis revealed that transcription factors DAF-16/FOXO and SKN-1/Nrf2 play essential roles in responding to Cd exposure and in the transgenerational induction of germ cell apoptosis. Additionally, histone H3K4 trimethylation (H3K4me3) marks stress-responsive genes and enhances their transcription, ultimately triggering multigenerational germ cell apoptosis. This study provides compelling evidence that the detrimental effects of Cd on the reproductive system can be inherited across generations. These findings enhance our understanding of the multigenerational effects of environmental pollutants and may inform strategies for the prevention and control of such pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.