Abstract

Cadmium toxicity has been associated with learning disabilities and Parkinsonian symptoms in humans. We have previously shown that cultured oligodendrocytes are directly damaged by cadmium exposure. Here, we characterized the molecular mechanisms underlying cadmium-induced cell death in oligodendrocyte progenitors (OLP). Cadmium caused a concentration-dependent decrease in cell viability as assessed by mitochondrial dehydrogenase activity and by the cellular release of lactate dehydrogenase (LDH). A short exposure (1 h) to cadmium (25–100 μM), followed by several hours of recovery, produced a predominant apoptotic mechanism of cell death, involving the mitochondrial intrinsic pathway, as evidenced by nuclear condensation, DNA fragmentation, bax integration into the outer mitochondrial membrane, cytochrome c release, and activation of caspases-9 and -3. Pretreatment of OLPs with the pan-caspase inhibitor, zVAD-fmk, prevented caspase-3 activation but only slightly reduced cell death 11 h after cadmium exposure and failed to prevent cadmium-induced bax insertion into the mitochondrial membrane. In contrast, the anti-oxidant N-acetyl cysteine blocked caspase-3 activation and significantly protected OLPs from cadmium-induced cell death. Continuous exposure (18–48 h) of OLPs to low micromolar concentrations (0.001–25 μM) of cadmium significantly decreased mitochondrial metabolic activity, increased LDH leakage starting at 5 μM and maximally activated caspase-3. These results suggest that cadmium induces OLP cell death mainly by apoptosis, and at higher concentrations or with prolonged exposure to the heavy metal there is an increase in cytoplasmic membrane damage, an index of necrosis. More importantly, transient exposure to cadmium is sufficient to damage OLPs and could in principle impair myelination in the neonate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.