Abstract

Cadmium is a well known human and animal carcinogen and is a ubiquitous contaminant in the environment. Although the carcinogenic mechanism of cadmium is a multifactorial process, oxidative DNA damage is believed to be of prime importance. In particular, cadmium suppresses the capacity of cells to repair oxidative DNA damage. In this study, cadmium treatment led to a significant increase in gamma-ray-induced 8-oxoguanine (8-oxoG) formation. Western blotting and semiquantitative reverse transcription-PCR revealed that cadmium treatment caused a decrease in the expression level of human OGG1 (8-oxoguanine-DNA glycosylase-1; hOGG1) in human fibroblast GM00637 and HeLa S3 cells. In addition, the cadmium-mediated decrease in hOGG1 transcription was the result of decreased binding of the transcription factor Sp1 to the hOGG1 promoter. Finally, we show that an increase in the functional hOGG1 expression level could inhibit the cadmium-mediated increase in gamma-ray-induced 8-oxoG accumulation as well as in gamma-radiation-induced mutation frequency at the HPRT (hypoxanthine-guanine phosphoribosyltransferase) gene locus. These results suggest that cadmium attenuates removal of gamma-ray-induced 8-oxoG adducts, which in turn increases the mutation frequency, and that this effect might, at least in part, result from suppression of hOGG1 transcription via inactivation of Sp1 as a result of cadmium treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.