Abstract
Cadmium (Cd) is a widespread environmental contaminant. Cd affects the cellular homeostasis and generates damage via complex mechanisms involving interactions with other metals, induction of oxidative stress and apoptotic or necrotic cell death, depending on the cell type and the concentration. The goal of the present study was to investigate the effect of exposure to CdCl 2 on the intracellular trace elements levels, the antioxidant enzyme activities and on DNA damage in the Jurkat T cell line. Cells were exposed to 5, 25 and 50 μM of CdCl 2 for 24 h. Cd significantly reduced the viability of Jurkat T cells and induced a dose-dependent increase in DNA damage with statistically significant differences relative to controls ( p < 0.001); the superoxide dismutase and glutathione peroxidase activities were significantly decreased. Lipid peroxidation and protein carbonyl levels were significantly increased while glutathione and the total intracellular sulfhydryl groups were decreased showing clearly that an oxidative stress was generated by Cd. Surprisingly the treatment with Cd induced a significant increase in the intracellular levels of all the trace elements measured. The results indicate that cellular pro-oxidative stress induced by Cd is most likely mediated by disruption of redox homeostasis associated to a mishandling of redox-active transition metals and causes lipid and protein oxidation and oxidative DNA damage in Jurkat T cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.