Abstract

Generation of reactive oxygen species (ROS) constitutes an important first reaction under many stress conditions in plants. We demonstrate that Nicotiana tabacum L. cv. Bright Yellow 2 (TBY-2) cells in suspension cultures, generate superoxide radical and hydrogen peroxide upon treatment with cadmium and zinc. Addition of catalase and N,N-diethyldithiocarbamate (DDC) decreased the level of H2O2, whereas superoxide dismutase (SOD) induced a slight increase of the H2O2 production. The effects of catalase, DDC and SOD on the heavy metal-induced ROS production indicate that it occurs outside of the cells, and that at least part of the hydrogen peroxide is produced by dismutation of the superoxide radical (O2·−). The effect of pretreatment of the cell cultures with commonly used mammalian NADPH oxidase inhibitors was also tested. Strong inhibitions of cadmium and zinc-mediated ROS production were obtained with the flavoprotein inhibitors—diphenylene iodonium (DPI) and quinacrine and with an inhibitor of b-type cytochromes—imidazol. Membrane permeable-N-ethyl maleimide (NEM) and iodoacetate, and membrane non-permeable thiol reagents—para-chloromercuribenzoic acid (pCMBS) also inhibited the ROS production. These results suggested that the enzyme responsible for cadmium and zinc-induced ROS production in tobacco cells contains a flavocytochrome. They also show the importance of intra- and extracellular thiol groups in the observed stress reaction. The induction of ROS production with heavy metals showed properties comparable to the elicitor-induced oxidative burst in other plant cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call