Abstract

The growing concern about pollution and toxicity in aquatic as well as terrestrial organisms is predominantly caused due to waterborne exposure and poses a risk to environmental systems and human health. This study addresses the co-toxic effects of cadmium (Cd) and ketoprofen (KPF), representing heavy metal and pharmaceutical discharge pollutants, respectively, in aquatic ecosystems. A 96-h acute toxicity assessment was conducted using zebrafish embryos. The results indicated that high dosages of KPF (10, 15, and 100 µg/mL) and Cd (10 and 15 µg/mL) reduced survivability and caused concentration-dependent deformities such as scoliosis and yolk sac edema. These findings highlight the potential defects in development and metabolism, as evidenced by hemolysis tests demonstrating dose-dependent effects on blood cell integrity. Furthermore, this study employs adult zebrafish for a 42-day chronic exposure to Cd and KPF (10 and 100 µg/L) alone or combined (10 + 10 and 100 + 100 µg/L) to assess organ-specific Cd and KPF accumulation in tissue samples. Organ-specific accumulation patterns underscore complex interactions impacting respiratory, metabolic, and detoxification functions. Prolonged exposure induces reactive oxygen species formation, compromising antioxidant defense systems. Histological examinations reveal structural changes in gills, gastrointestinal, kidney, and liver tissues, suggesting impairments in respiratory, osmoregulatory, nutritional, and immune functions. This study emphasizes the importance of conducting extensive research on co-toxic effects to assist with environmental risk assessments and safeguard human health and aquatic ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.