Abstract

Previously, we demonstrated the sensitivity of RPTEC/TERT1 cells, an immortalized human renal proximal tubule epithelial cell line, to two common environmental carcinogens, cadmium (Cd) and benzo[a]pyrene (B[a]P). Here, we measured BPDE-DNA adducts using a competitive ELISA method after cells were exposed to 0.01, 0.1, and 1 μM B[a]P to determine if these cells, which appear metabolically competent, produce BPDE metabolites that react with DNA. BPDE-DNA adducts were most significantly elevated at 1 μM B[a]P after 18 and 24 h with 36.34 ± 9.14 (n = 3) and 59.75 ± 17.03 (n = 3) adducts/108 nucleotides respectively. For mixture studies, cells were exposed to a non-cytotoxic concentration of Cd, 1 μM, for 24 h and subsequently exposed to concentrations of B[a]P for 24 h. Under these conditions, adducts detected at 1 μM B[a]P after 24 h were significantly reduced, 17.28 ± 1.30 (n = 3) adducts/108 nucleotides, in comparison to the same concentration at previous time points without Cd pre-treatment. We explored the NRF2 antioxidant pathway and total glutathione levels in cells as possible mechanisms reducing adduct formation under co-exposure. Results showed a significant increase in the expression of NRF2-responsive genes, GCLC, HMOX1, NQO1, after 1 μM Cd × 1 μM B[a]P co-exposure. Additionally, total glutathione levels were significantly increased in cells exposed to 1 μM Cd alone and 1 μM Cd × 1 μM B[a]P. Together, these results suggest that Cd may antagonize the formation of BPDE-DNA adducts in the RPTEC/TERT1 cell line under these conditions. We hypothesize that this occurs through priming of the antioxidant response pathway resulting in an increased capacity to detoxify BPDE prior to BPDE-DNA adduct formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call