Abstract

ObjectiveTo examine the role of Cd-induced reactive oxygen species (ROS) generation in the apoptosis of neuronal cells. MethodsNeuronal cells (primary rat cerebral cortical neurons and PC12 cells) were incubated with or without Cd post-pretreatment with rapamycin (Rap) or N-acetyl-l-cysteine (NAC). Cell viability was determined by MTT assay, apoptosis was examined using flow cytometry and fluorescence microscopy, and the activation of phosphoinositide 3′-kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and mitochondrial apoptotic pathways were measured by western blotting or immunofluorescence assays. ResultsCd-induced activation of Akt/mTOR signaling, including Akt, mTOR, p70 S6 kinase (p70 S6K), and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). Rap, an mTOR inhibitor and NAC, a ROS scavenger, blocked Cd-induced activation of Akt/mTOR signaling and apoptosis of neuronal cells. Furthermore, NAC blocked the decrease of B-cell lymphoma 2/Bcl-2 associated X protein (Bcl-2/Bax) ratio, release of cytochrome c, cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP), and nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G (Endo G). ConclusionCd-induced ROS generation activates Akt/mTOR and mitochondrial pathways, leading to apoptosis of neuronal cells. Our findings suggest that mTOR inhibitors or antioxidants have potential for preventing Cd-induced neurodegenerative diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.