Abstract

Ewing sarcoma (ES) is a small round-cell tumor of the bones and soft tissues. ES frequently causes distant metastases, particularly in the lung and bone, which worsens patient prognosis. Cadherin-11 (Cad-11) is an adhesion molecule that is highly expressed in osteoblasts. Its expression is associated with bone metastases in prostate and breast cancer patients, and is known to occur in ES. Here we investigated the effects of Cad-11 on bone metastases of ES. Human ES cell lines RD-ES, SK-ES-1, SK-N-MC, and TC-71 cells were transduced with lentivirus containing Cad-11 shRNA or control shRNA (ES/Cad-11 and ES/Ctr). RD-ES and TC-71 were infected with a lentivirus luciferase vector. Adhesion assays were performed using these cells and recombinant Cad-11-Fc chimera or mouse osteoblast cell line MC3T3-E1. Cell motility was investigated via wound-healing assay. Intracardiac injection of RD-ES/Cad-11 and RD-ES/Ctr was used to create a mouse model of experimental bone metastasis. The association between Cad-11 expression and bone metastases and clinical prognosis in ES patients was analyzed by immunohistochemistry. We found knockdown of Cad-11 in ES cells resulted in reduced attachment ability and cell motility. In a mouse model of metastasis, RD-ES/Cad-11 cells caused fewer metastases than RD-ES/Ctr cells. The expression of Cad-11 in ES patients was significantly related to bone metastases (P < 0.05, logistic regression) and poorer overall survival (P < 0.05, log-rank test). These findings may explain that Cad-11 in ES cells may be essential for cell adhesion and motility, and is a promising molecular target for patients with ES.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.