Abstract
In the avian embryo, neural crest (NC) progenitors arise in the neuroectoderm during gastrulation, long before their dissemination. Although the gene regulatory network involved in NC specification has been deciphered, the mechanisms involved in their segregation from the other neuroectoderm-derived progenitors, notably the epidermis and neural tube, are unknown. Because cadherins mediate cell recognition and sorting, we scrutinized their expression profiles during NC specification and delamination. We found that the NC territory is defined precociously by the robust expression of Cadherin-6B in cells initially scattered among other cells uniformly expressing E-cadherin, and that NC progenitors are progressively sorted and regrouped into a discrete domain between the prospective epidermis and neural tube. At completion of NC specification, the epidermis, NC, and neural tube are fully segregated in contiguous compartments characterized by distinct cadherin repertoires. We also found that Cadherin-6B down-regulation constitutes a major event during NC delamination and that, with the exception of the caudal part of the embryo, N-cadherin is unlikely to control NC emigration. Our results indicate that partition of the neuroectoderm is mediated by cadherin interplays and ascribes a key role to Cadherin-6B in the specification and delamination of the NC population. Developmental Dynamics 246:550-565, 2017. © 2017 Wiley Periodicals, Inc.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.