Abstract
Agricultural land parcels (ALPs) are essential for effective agricultural management, influencing activities ranging from crop yield estimation to policy development. However, traditional methods of ALP delineation are often labor-intensive and require frequent updates due to the dynamic nature of agricultural practices. Additionally, the significant variations across different regions and the seasonality of agriculture pose challenges to the automatic generation of accurate and timely ALP labels for extensive areas. This study introduces the cadastral-to-agricultural (Cad2Ag) framework, a novel approach that utilizes cadastral data as training labels to train deep learning models for the delineation of ALPs. Cadastral parcels, which are relatively widely available and stable elements in land management, serve as proxies for ALP delineation. Employing an adapted U-Net model, the framework automates the segmentation process using remote sensing images and geographic information system (GIS) data. This research evaluates the effectiveness of the proposed Cad2Ag framework in two U.S. regions—Indiana and California—characterized by diverse agricultural conditions. Through rigorous evaluation across multiple scenarios, the study explores diverse scenarios to enhance the accuracy and efficiency of ALP delineation. Notably, the framework demonstrates effective ALP delineation across different geographic contexts through transfer learning when supplemented with a small set of clean labels, achieving an F1-score of 0.80 and an Intersection over Union (IoU) of 0.67 using only 200 clean label samples. The Cad2Ag framework’s ability to leverage automatically generated, extensive, free training labels presents a promising solution for efficient ALP delineation, thereby facilitating effective management of agricultural land.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.