Abstract

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic cause of stroke and vascular dementia. Disease-causing mutations invariably affect cysteine residues within epidermal growth factor-like repeat domains in the extracellular domain of the NOTCH3 receptor (N3(ECD)). The biochemical and histopathological hallmark of CADASIL is the accumulation of N3(ECD) at the cell surface of vascular smooth muscle cells which degenerate over the course of the disease. The molecular mechanisms leading to N3(ECD) accumulation remain unknown. Here we show that both wild-type and CADASIL-mutated N3(ECD) spontaneously form oligomers and higher order multimers in vitro and that multimerization is mediated by disulfide bonds. Using single-molecule analysis techniques ('scanning for intensely fluorescent targets'), we demonstrate that CADASIL-associated mutations significantly enhance multimerization compared with wild-type. Taken together, our results for the first time provide experimental evidence for N3 self-association and strongly argue for a neomorphic effect of CADASIL mutations in disease pathogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.