Abstract

In this work, the evolution of the CaCO3 crystalline phase during the CaO–CO2 reaction was investigated by means of in situ synchrotron radiation X-ray powder diffraction performed at the Advanced Photon Source (APS) facilities of the Argonne National Laboratory. CO2 absorption experiments were carried out in a high temperature reaction capillary with a controlled atmosphere of pure carbon dioxide (CO2 partial pressure of 1 bar) and in the temperature range between 450 and 750 °C, using CaO-based sorbents obtained by calcination of commercial calcium carbonate. The Rietveld refinement method was applied to estimate the average size of the CaCO3 crystallites formed during a carbonation time of 20 min, as a function of the carbonation temperature and of the initial calcination conditions. Local maxima were observed in the CaCO3 crystallite size versus time curves and were identified as the critical CaCO3 crystallite sizes, marking the transition between the first fast carbonation stage and the second reacti...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.