Abstract
Novel proteins of the Stat (signal transducers and activators of transcription) family have been associated with proliferation and differentiation of certain cells; the role of these transcription factors in gut differentiation has not been examined. The purpose of this study was to determine whether the cellular levels and actual binding of the Stat proteins are altered with intestinal differentiation using the Caco-2 cell line that spontaneously differentiates to a small bowel phenotype after confluency. We found that both Stat3 and Stat5 protein levels were increased in preconfluent and confluent Caco-2 cells; levels then decreased with postconfluency. Mobility shift assays demonstrated maximal binding of Stat3 and Stat5 at confluency and, similar to protein levels, binding activity decreased with postconfluency. The intestinal differentiation marker gene sucrase-isomaltase was increased by postconfluent day 1 with maximal levels by day 6. The progressive decrease of Stat3 and Stat5 protein levels and binding activity, occurring at a time associated with increased Caco-2 cell differentiation, suggests that a decrease in the cellular levels of these proteins may potentially play a role in subsequent intestinal cell differentiation. Delineating the cellular mechanisms responsible for intestinal differentiation is crucial to a better understanding of both normal gut development and aberrant gut growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.