Abstract

Systems-on-Chip (SoC) of the new generation will be extremely complex devices, composed from complex subsystems, relying on abstraction from implementation details. These chips will support the execution of a mix of concurrent applications that are not known in detail at chip design time. These SoCs require a significant degree of programmability to configure both the set of functions that must execute as well as the structure of the dataflow between these functions. To ease the programming effort multiprocessor computers have employed cache coherent share memory for decades, abstracting the average programmer from system complexity issues such as multiple processors and memory hierarchies. Memory coherency in multiprocessor computers has a history of decades, and has proven to be an indispensable abstraction from system complexity towards the application programmer. This chapter describes a next generation SoC for the consumer electronics domain (e.g. audio/video, vision, robotics). It features heterogeneous multiprocessor subsystems with a snooping cache coherence protocol, combined in a system with distributed memory employing a directory coherency protocol. It is explained why and how the coherent memory model is indispensable for implementing both data transport and synchronization for multi-tasking streaming applications in distributed memory systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.