Abstract
Hard real-time systems are typically composed of multiple tasks, subjected to timing constraints. To guarantee that these constraints will be respected, the Worst-Case Response Time (WCRT) of each task is needed. In the presence of systems supporting preemptible tasks, we need to take into account the time lost due to task preemption. A major part of this delay is the Cache-Related Preemption Delay (CRPD), which represents the penalties due to cache block evictions by preempting tasks. Previous works on CRPD have focused on caches with Least Recently used (LRU) replacement policy. However, for many real-world processors such as ARM9 or ARM11, the use of First-in-first-out (FIFO) cache replacement policy is common. In this paper, we propose an approach to compute CRPD in the presence of instruction caches with FIFO replacement policy. We use the result of a FIFO instruction cache categorization analysis to account for single-task cache misses, and we model as an Integer Linear Programming (ILP) system the additional preemption-related cache misses. We study the effect of cache related timing anomalies, our work is the first to deal with the effect of timing anomalies in CRPD computation. We also present a WCRT computation method that takes advantage of the fact that our computed CRPD does not increase linearly with respect to the preemption count. We evaluated our method by computing the CRPD with realistic benchmarks (e.g. drone control application, robot controller application), under various cache configuration parameters. The experimentation shows that our method is able to compute tight CRPD bound for benchmark tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.