Abstract

Numerical solution of the eikonal equation is frequently used to compute first-arrival travel times for a given velocity model in seismic applications. Computations for large three-dimensional models become expensive requiring the use of efficient parallel solvers. We present new parallel implementations of the fast sweeping and locking sweeping methods optimized for shared memory systems such as multicore CPUs; we call them block fast sweeping method (BFSM) and block locking sweeping method (BLSM). Proposed methods are based on the domain decomposition approach with a special attention paid to high efficiency of the cache utilization and task execution synchronization. Performance tests on realistic models show high parallel efficiency of 85–95% on modern multicore CPUs and require the same number of iterations to converge as do the serial sweeping methods. We also highlight the importance of properly selecting the stopping criterion in the iterative sweeping methods aiming for a balance between computational time and accuracy of the result required by an application. In particular, we show that in seismic applications one can reach reasonable accuracy of computed travel times while dramatically reducing the number of iterations compared to the case of using the full convergence stopping criterion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.