Abstract

In multi-tasking real-time systems, inter-task cache interference due to preemptions degrades schedulability as well as performance. To address this problem, we propose a novel scheduling scheme, called limited preemptive scheduling (LPS), that limits preemptions to execution points with small cache-related preemption costs. Limiting preemptions decreases the cache-related preemption costs of tasks but increases blocking delay of higher priority tasks. The proposed scheme makes an optimal trade-off between these two factors to maximize the schedulability of a given task set while minimizing cache-related preemption delay of tasks. Experimental results show that the LPS scheme improves the maximum schedulable utilization by up to 40\% compared with the traditional fully preemptive scheduling (FPS) scheme. The results also show that up to 20\% of processor time is saved by the LPS scheme due to reduction in the cache-related preemption costs. Finally, the results show that both the improvement of schedulability and the saving of processor time by the LPS scheme increase as the speed gap between the processor and main memory widens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.