Abstract

Hardware cache behavior is an important factor in the performance of memory-resident, data-intensive systems such as XML filtering engines. A key data structure in several recent XML filters is the automaton, which is used to represent the long-running XML queries in the main memory. In this paper, we study the cache performance of automaton-based XML filtering through analytical modeling and system measurement. Furthermore, we propose a cache-conscious automaton organization technique, called the hot buffer, to improve the locality of automaton state transitions. Our results show that 1) our cache performance model for XML filtering automata is highly accurate and 2) the hot buffer improves the cache performance as well as the overall performance of automaton-based XML filtering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.