Abstract

Shared memory is a common interprocessor communication paradigm for single-chip multiprocessor platforms. Snoop-based cache coherence is a very successful technique that provides a clean shared-memory programming abstraction in general-purpose chip multiprocessors, but there is no consensus on its usage in resource-constrained multiprocessor systems on chips (MPSoCs) for embedded applications. This work aims at providing a comparative energy and performance analysis of cache-coherence support schemes in MPSoCs. Thanks to the use of a complete multiprocessor simulation platform, which relies on accurate technology-homogeneous power models, we were able to explore different cache-coherent shared-memory communication schemes for a number of cache configurations and workloads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.