Abstract

Cabozantinib is a newly developed tyrosine kinase inhibitor, which is applied on patients with hepatocellular carcinoma (HCC) unresponsive to conventional tyrosine kinase inhibitors, including lenvatinib. However, the mechanism of cabozantinib efficacy for lenvatinib-resistant tumor cells has not been well established in basic studies. The purpose of this study is to elucidate the mechanisms by which cabozantinib inhibits tumor growth of lenvatinib-resistant hepatocellular carcinoma cell lines in vitro and in vivo. We established a lenvatinib-resistant Hep3B cell line (Hep3B-LR) and evaluated the inhibitory effect of cabozantinib on the growth of Hep3B-LR cells. Hep3B-LR exhibited approximately 20 times greater IC50 for lenvatinib than the wild type. Compared with wild-type Hep3B, Hep3B-LR was characterized by enhanced expression of EGFR, MET and ErbB2. Cabozantinib suppressed tumor growth of Hep3B-LR in vitro and in vivo. Microarray analysis and real-time qPCR using the xenografts revealed cabozantinib downregulated miR-126-3p, a tumor suppressor miRNA, suggesting that miR-126-3p did not contribute to tumor inhibitory effect of cabozantinib. Proteome analysis using xenograft tissues demonstrated an upregulation of FTCD, a tumor suppressor gene, by cabozantinib administration. The enhanced expression of FTCD by cabozantinib was confirmed by western blot and immunohistochemistry analysis. Furthermore, FTCD expression in Hep3B-LR before cabozantinib administration was weaker than that in wild-type Hep3B. FTCD expression was weakened along with acquisition of lenvatinib-resistance, and was restored by cabozantinib administration. FTCD may be a novel therapeutic target of cabozantinib in case of lenvatinib treatment failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.