Abstract

This paper presents an optimization algorithm to compute the prestressing forces on concrete cable-stayed bridges to achieve the desired final geometry. The structural analysis includes the load history and geometry changes due to the construction sequence and the time-dependent effects due to creep, shrinkage and aging of the concrete. An entropy-based approach was used for structural optimization and discrete direct sensitivity analysis was used to evaluate the structural response to changes in the design variables. Numerical examples are presented and the results exhibit the importance of considering both the construction stages and the time-dependent effects for adequately predict the bridge behaviour and compute the cable prestressing forces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.