Abstract

Lessons learned during a study on the effects that electrical power and signal wiring harness cables introduce on the dynamic response of precision spacecraft is presented, along with the most significant results. The study was a three year effort to discover a set of practical approaches for updating well-defined dynamic models of harness-free structures where knowledge of the cable type, position, and tie-down method are known. Although cables are found on every satellite, the focus was on precision, low damping, and very flexible structures. Obstacles encountered, classified as tangents, rabbit holes, and dead ends, offer practical lessons for structural dynamics research. The paper traces the historical, experiential progression of the project, describing how the obstacles affected the project. First, methods were developed to estimate cable properties. Problems were encountered because of the flexible, highly damped nature of cables. A beam was used as a test article to validate experimentally derived cable properties and to refine the assumptions regarding boundary conditions. A spacecraft bus-like panel with cables attached was designed, and finite element models were developed and validated through experiment. Various paths were investigated at each stage before a consistent test and analysis methodology was developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call