Abstract

This letter introduces two novel extended Kalman filtering (EKF) approaches to fuse payload accelerometer and rate gyroscope data with forward kinematics to estimate the payload pose of a cable-driven parallel robot (CDPR). An Euler-angle-based EKF and a rotation-vector-based multiplicative extended Kalman filter (MEKF) are proposed for this purpose. An unconstrained attitude parameterization identity is used to derive an analytic form of the Jacobian involved in the iterative forward kinematics calculations, which facilitates the use of different attitude parameterizations. Monte-Carlo simulations are performed with two levels of realistic sensor noise and bias, as well as calibration errors. The numerical results demonstrate more accurate pose estimates using the EKF and MEKF compared to forward kinematics computations alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.