Abstract

AbstractBridge cables exhibit low damping characteristics and are susceptible to external excitations, leading to random vibrations. Therefore, a cable cross‐tie triboelectric‐electromagnetic hybrid generator triggered by vibrations in bridge cables (CCT‐TEHG) is proposed. The CCT‐TEHG enhances the natural frequency of the cables by connecting adjacent cables, thereby preventing low‐frequency resonance. The device connects adjacent bridge cables to increase the natural frequency, preventing low‐frequency resonance. Comprising triboelectric nanogenerators (TENGs) and electromagnetic generators (EMG), the CCT‐TEHG effectively broadens the frequency range for energy harvesting, capturing vibrational energy from bridge cables in cable‐stayed bridges. The TENG module in CCT‐TEHG features a soft‐contact design, incorporating rabbit fur to supplement charges and enhance output density. This design also avoids direct material contact between generator units, improving operational durability. The experimental results show that the maximum output voltage and current of the TENG and EMG modules can respectively reach up to 270 V, 13 V, and 5.2 µA, 18 mA, and peak power to 2.04 mW, 10 mW. The CCT‐TEHG can function as a power source, sufficient to power 303 light‐emitting diodes (LEDs) or a 20 mW temperature and humidity sensor. Therefore, CCT‐TEHG has good application prospects in the field of bridge cable vibration energy harvest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.