Abstract

Ca(2+) was reported to regulate spore germination and aerial hypha formation in streptomycetes; the underlying mechanism of this regulation is not known. cabC, a gene encoding an EF-hand calcium-binding protein, was disrupted or overexpressed in Streptomyces coelicolor M145. On R5- agar, the disruption of cabC resulted in denser aerial hyphae with more short branches, swollen hyphal tips, and early-germinating spores on the spore chain, while cabC overexpression significantly delayed development. Manipulation of the Ca(2+) concentration in R5- agar could reverse the phenotypes of cabC disruption or overexpression mutants and mimic mutant phenotypes with M145, suggesting that the mutant phenotypes were due to changes in the intracellular Ca(2+) concentration. CabC expression was strongly activated in aerial hyphae, as determined by Western blotting against CabC and confocal laser scanning microscopy detection of CabC::enhanced green fluorescent protein (EGFP). CabC::EGFP fusion proteins were evenly distributed in substrate mycelia, aerial mycelia, and spores. Taken together, these results demonstrate that CabC is involved in Ca(2+)-mediated regulation of spore germination and aerial hypha formation in S. coelicolor. CabC most likely acts as a Ca(2+) buffer and exerts its regulatory effects by controlling the intracellular Ca(2+) concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call