Abstract

A new high-resolution Eulerian numerical method is proposed for modelling quasigeostrophic ocean dynamics in eddying regimes. The method is based on a novel, second-order non-dissipative and low-dispersive conservative advection scheme called CABARET. The properties of the new method are compared with those of several high-resolution Eulerian methods for linear advection and gas dynamics. Then, the CABARET method is applied to the classical model of the double-gyre ocean circulation and its performance is contrasted against that of the common vorticity-preserving Arakawa method. In turbulent regimes, the new method permits credible numerical simulations on much coarser computational grids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call