Abstract

We propose a family of logical theories for capturing an abstract notion of consistency and show how to build a generic and efficient theory solver that works for all members in the family. The theories can be used to model the influence of memory consistency models on the semantics of concurrent programs. They are general enough to precisely capture important examples like TSO, POWER, ARMv8, RISC-V, RC11, IMM, and the Linux kernel memory model. To evaluate the expressiveness of our theories and the performance of our solver, we integrate them into a lazy SMT scheme that we use as a backend for a bounded model checking tool. An evaluation against related verification tools shows, besides flexibility, promising performance on challenging programs under complex memory models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.