Abstract

The mineral-like phase Ca3SiO4Cl2, an anthropogenic anhydrous calcium chlorine-silicate from the Chelyabinsk coal basin has been investigated using single-crystal and high-temperature powder X-ray diffraction and Raman spectroscopy. The empirical formula of this phase was calculated as Ca2.96[(Si0.98P0.03)Σ1.01O4]Cl2, in good agreement with its ideal formula. Ca3SiO4Cl2 is monoclinic, space group P21/c, Z = 4, a = 9.8367(6) Å, b = 6.7159(4) Å, c = 10.8738(7) Å, β = 105.735(6)°, V = 691.43(8) Å3. The crystal structure is based upon the pseudo-layers formed by Ca–O and Si–O bonds separated by Cl atoms. The pseudo-layers are parallel to the (100) plane. The crystal structure of Ca3SiO4Cl2 was refined (R1 = 0.037) and stable up to 660 °C; it expands anisotropically with the direction of the strongest thermal expansion close to parallel to the [−101] direction, which can be explained by the combination of thermal expansion and shear deformations that involves the ‘gliding’ of the Ca silicate layers relative to each other. The Raman spectrum of the compound contains the following bands (cm–1): 950 (ν3), 848 (ν1), 600 (ν4), 466 (ν2), 372 (ν2). The bands near 100–200 cm−1 can be described as lattice modes. The compound had also been found under natural conditions in association with chlorellestadite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.