Abstract

Force production of cardiac muscle is highly dependent on the interval between the excitations. The aim was to investigate relations between intracellular calcium ([Ca2+]i) and force when a stimulus protocol, with three extrasystoles (ESs) at various intervals, was used. The relation between [Ca2+]i and force was compared with that in frog skeletal muscle fibre. Fluo-3 was microinjected into thin cardiac trabeculae to monitor [Ca2+]i. During steady-state [Ca2+]i consisted of a rapid rise (phase 1) that lasted until peak dF/dt (rate of force development) and was followed by a slower rise (phase 2) that coincided with the action potential and had a peak after peak force. The decline in [Ca2+]i outlasted the duration of the contraction. As the ES intervals were prolonged, there was a gradual restitution of force and of the amplitude and rate of rise of phase 1 [Ca2+]i. Peak dF/dt was linearly related to the amplitude of phase 1 [Ca2+]i during restitution and potentiation of force. Skeletal muscle fibres were loaded with fluo-3-AM. From [Ca2+]i the amount of calcium bound to troponin ([Ca-T]) as a function of time was estimated. Force production of the skeletal muscle fibre could be predicted from [Ca-T] when the signal was delayed (time constant 36 ms). This finding indicates that the recorded [Ca2+]i in skeletal muscle represents activator calcium. In cardiac muscle probably only phase 1 [Ca2+]i represents activator calcium. Phase 2 [Ca2+]i probably represents calcium entry during the action potential and does not activate the contractile system to any significant extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.