Abstract

In non-excitable cells, many agonists increase the intracellular Ca(2+) concentration ([Ca(2+)](i)) by inducing an inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release from the intracellular stores. Ca(2+) influx from the extracellular medium may then sustain the Ca(2+) signal. [Ca(2+)](i) recovers its resting level as a consequence of Ca(2+)-removing mechanisms, i.e. plasma-membrane Ca(2+)-ATPase (PMCA) pump, Na(+)/Ca(2+) exchanger (NCX) and sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump. In a study performed in pancreatic acinar cells, evidence has been provided suggesting that, during the decay phase of the agonist-evoked Ca(2+) transients, the Ca(2+) concentration within the intracellular stores remains essentially constant [Mogami, Tepikin and Petersen (1998) EMBO J. 17, 435-442]. It was therefore hypothesized that, in such a situation, intracellular Ca(2+) is not only picked up by the SERCA pump, but is also newly released through IP(3)-sensitive Ca(2+) channels, with the balance between these two processes being approximately null. The main aim of the present work was to test this hypothesis by a different experimental approach. Using cardiac microvascular endothelial cells, we found that inhibition of the SERCA pump has no effect on the time course of agonist-evoked Ca(2+) transients. This result was not due to a low capacity of the SERCA pump since, after agonist removal, this pump proved to be very powerful in clearing the excess of intracellular Ca(2+). We showed further that: (i) in order to avoid a rapid removal of Ca(2+) by the SERCA pump, continuous IP(3) production appears to be required throughout all of the decay phase of the Ca(2+) transient; and (ii) Ca(2+) picked up by the SERCA pump can be fully and immediately released by agonist application. All these results support the model of Mogami, Tepikin and Petersen [(1998) EMBO J. 17, 435-442]. Since the SERCA pump did not appear to be involved in shaping the decay phase of the agonist-evoked Ca(2+) transient, we inhibited the PMCA pump with carboxyeosin, and NCX with benzamil and by removing extracellular Na(+). The results indicate that, during the decay phase of the agonist-evoked Ca(2+) transient, the intracellular Ca(2+) is removed by both the PMCA pump and NCX. Finally, we provide evidence indicating that mitochondria have no role in clearing intracellular Ca(2+) during agonist-evoked Ca(2+) transients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call