Abstract
Brush border myosin I from chicken intestinal microvilli is a membrane-associated, single-headed myosin composed of a 119-kDa heavy chain and several calmodulin light chains. We first describe in detail a new procedure for the rapid purification of brush border myosin I in greater than 99% purity with a yield of 40%, significantly higher than for previous methods. The subunit stoichiometry was determined to be 4 calmodulin light chains/myosin I heavy chain by amino acid compositional analysis of the separated subunits. We have studied the effects of Ca2+ and temperature on dissociation of calmodulin from myosin I and on myosin I Mg2(+)-ATPase and contractile activities. At 30 degrees C the actin-activable ATPase activity is stimulated 2-fold at 10-700 microM Ca2+. Dissociation of 1 calmodulin occurs at 25-50 microM Ca2+, but this has no effect on actin activation. The contractile activity of myosin I, expressed as superprecipitation, is greatly enhanced by Ca2+ under conditions in which 1 calmodulin is dissociated. This calmodulin is thus not essential for actin activation or superprecipitation. Myosin I was found to be highly temperature-sensitive, with an increase to 37 degrees C resulting in dissociation of 1 calmodulin at below 10(-7) M Ca2+ and an additional 1.5 calmodulins at 1-10 microM Ca2+. A complete loss of actin activation accompanies the Ca2(+)-induced calmodulin dissociation at 37 degrees C. Our conclusion is that physiological levels of Ca2+ can either stimulate or inhibit the mechanoenzyme activities of brush border myosin I in vitro, with the mode of regulation determined by the number of associated calmodulin light chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.