Abstract

Under the influence of gonadotropins or growth factors, a close cooperation develops between cumulus cells and the oocyte that is implicated in transmitting signals involved in maintaining or releasing the meiotic arrest in the oocyte. While cyclic adenosine 5'-monophosphate (cAMP) is a key molecule in maintaining the meiotic arrest, calcium (Ca(2+)) may play a role in controlling either spontaneous or gonadotropin-induced oocyte maturation, possibly by modulating intracytoplasmic cAMP concentrations via Ca(2+)-sensitive adenylate cyclases. This review focuses on the mechanisms related to the origin of the Ca(2+) wave that travels from the cumulus cells to the oocyte, and discusses the source of variations affecting the dynamics of this wave.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.