Abstract

Under the influence of gonadotropins or growth factors, a close cooperation develops between cumulus cells and the oocyte that is implicated in transmitting signals involved in maintaining or releasing the meiotic arrest in the oocyte. While cyclic adenosine 5'-monophosphate (cAMP) is a key molecule in maintaining the meiotic arrest, calcium (Ca(2+)) may play a role in controlling either spontaneous or gonadotropin-induced oocyte maturation, possibly by modulating intracytoplasmic cAMP concentrations via Ca(2+)-sensitive adenylate cyclases. This review focuses on the mechanisms related to the origin of the Ca(2+) wave that travels from the cumulus cells to the oocyte, and discusses the source of variations affecting the dynamics of this wave.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call