Abstract

Haloperidol, a typical antipsychotic medication, has been shown to possess various biological effects in different brain models. However, the impact of haloperidol on Ca2+ signaling in astrocytes is elusive. This study explored the effect of haloperidol on cytosolic free Ca2+ levels ([Ca2+]i) and viability, and established these two connections in Gibco® Human Astrocytes (GHAs) and DI TNC1 rat astrocytes. Haloperidol (5-20μM) caused [Ca2+]i rises in a concentration-dependent manner in GHAs but not in DI TNC1 cells. Furthermore, removal of extracellular Ca2+ reduced haloperidol's effect by approximately 30% in GHAs. Haloperidol (20-40μM) evoked concentration-dependent cytotoxicity in GHAs and DI TNC1 cells. However, chelating cytosolic Ca2+ with the Ca2+ chelator BAPTA/AM significantly reversed haloperidol's cytotoxicity only in GHAs. In GHAs, haloperidol-induced Ca2+ entry was inhibited by store-operated Ca2+ modulators (2-APB and SKF96365) and the protein kinase C (PKC) inhibitor GF109203X. This Ca2+ entry induced by haloperidol was confirmed by Mn2+ entry-induced quench of fura-2 fluorescence. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) abolished haloperidol-induced [Ca2+]i rises. Conversely, treatment with haloperidol inhibited 45% of BHQ-evoked [Ca2+]i rises. Moreover, haloperidol-induced Ca2+ release from the endoplasmic reticulum was abolished by inhibition of phospholipase C (PLC) by U73122. Together, in GHAs but not in DI TNC1 cells, haloperidol caused Ca2+-associated cell death, induced Ca2+ entry via PKC-sensitive store-operated Ca2+ channels, and evoked PLC-dependent Ca2+ release from the endoplasmic reticulum. The protective effect of Ca2+ chelating on haloperidol-induced cytotoxicity in human astrocytes was also demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call