Abstract

The Ca2+ and calmodulin sensitivity of endogenous protein kinase activity in synaptosomal membrane fragments from rat brain was studied in medium containing Ca2+ plus EGTA using a modified computer programme to calculate free Ca2+ concentrations that took into account the effect of all competing cations and chelators. The Ca2+-dependent phosphorylation of 10 major polypeptide acceptors with Mr values ranging from 50 to 360 kilodaltons required calmodulin in reactions that were all equally sensitive to Ca2+; half-maximal phosphorylation required a free Ca2+ concentration of 45 nM and maximal phosphorylation approximately 110 nM. The significance of these values in relation to published data on the intracellular concentration of free Ca2+ in the nervous system is discussed. One acceptor of 45 kilodaltons was phosphorylated in a Ca2+-dependent reaction that did not require calmodulin. This polypeptide appeared to correspond to the B-50 protein, an established substrate of the lipid-dependent protein kinase C. Further study of this phosphorylating system showed that the reaction was only independent of calmodulin at saturating concentrations of Ca2+; at subsaturating concentrations (in the range 50-130 nM), a small but significant stimulation of the enzyme by calmodulin was demonstrated. The possible significance of this finding is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.