Abstract

Adenosine triphosphatase (ATPase) activity stimulated by Ca2+ or Mg2+ was characterized in spinal nerve and spinal sensory ganglion of bullfrog. Enzyme activity of homogenates from both sources reached a maximum at a 1-2 mM concentration of either cation, although the level of maximal activity in nerve trunks was approximately twice that in ganglia. Enzyme activation was not observed with 2 mM-Sr2+ or Ba2+. Co2+ or Mn2+, at 2 mM, depressed Ca2+ activation of the enzyme by 50-60% in nerve but had no inhibitory effect on ganglia activity. In intact spinal ganglion/spinal nerve preparations, incubated for 20 h in medium containing 0.2 mM-Co2+, no effect was detected on Ca2+/Mg2+ ATPase activity in ganglia or nerve trunks whereas fast axonal transport was inhibited by 80%. Incubation in medium containing 0.02 mM-Hg2+ depressed enzyme activity in ganglia by 64% and in nerve trunks by 44%, whereas fast transport was again inhibited by 80%. When only nerve trunks were exposed to these ions, Hg2+ but not Co2+ was observed to slow the rate of fast axonal transport. The divalent cation specificity of the Ca2+/Mg2+ ATPase activity is distinct from the ion specificities, determined in previous work, of the Ca2+ requirement during initiation of fast axonal transport in the soma, and of the Ca2+ requirement during translocation in the axon. Thus, previous observations of Ca2+-dependent events in fast axonal transport cannot be taken per se to suggest the involvement of Ca2+/Mg+ ATPase in the transport process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.