Abstract

The serotonin 5-HT(3) receptor native to rat hippocampal CA1 stratum radiatum interneurons is blocked by Ca(2+) ions in a dose- and voltage-dependent manner, which is reflected by a region of negative slope conductance in the I-V curve. The steep dependence on the extracellular Ca(2+) concentration suggests that the channel contains more than one binding site for Ca(2+). A three barrier-two site model, based on Eyring rate theory, was used to describe the I-V curves. When extra- and intracellular K(+) and Cs(+) were substituted with Na(+), the I-V curves were accurately fit by the model, unlike the I-V curves recorded under standard ionic conditions. This suggests that the K(+) and Cs(+) permeabilities are small compared with that of Na(+). The distribution of the energy barriers and binding sites for Ca(2+) and Na(+) showed that the binding sites are located at approximately the 13' and the -4' position in the ion channel. The model predicts that at large hyperpolarized membrane potentials (more negative than -120 mV), the fractional Ca(2+) current amounts to approximately 1% of the total ion current. However, at physiologically relevant membrane potentials, the fractional Ca(2+) current is smaller (<0.1%) and the relative Ca(2+) permeability (P(Ca)/P(Na)) is estimated to be 0.10 at -60 mV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.