Abstract

Increasing the cytosolic Ca2+ concentration of electrically permeabilized rat islets of Langerhans caused rapid increases in insulin secretion and in 32P incorporation into islet proteins. However, the secretory responsiveness of permeabilized islets was relatively transient, with insulin secretion approaching basal levels within 20-30 min despite the continued presence of stimulatory concentrations of Ca2+. The loss of Ca2(+)-induced insulin secretion was accompanied by a marked reduction in Ca2(+)-dependent protein phosphorylation, but not in cyclic AMP-dependent protein phosphorylation. Similarly, permeabilized islets which were no longer responsive to Ca2+ were able to mount appropriate secretory responses to cyclic AMP and to a protein kinase C-activating phorbol ester. These results suggest that prolonged exposure to elevated cytosolic Ca2+ concentrations results in a specific desensitization of the secretory mechanism to Ca2+, perhaps as a result of a decrease in Ca2(+)-dependent kinase activity. Furthermore, these studies suggest that secretory responses of B-cells to cyclic AMP and activators of protein kinase C are not dependent upon the responsiveness of the cells to changes in cytosolic Ca2+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.