Abstract

The purpose of the present study was to determine the changes in intracellular ionized calcium concentration ([Ca2+]i) or [Ca2+]i sensitivity accompanying spontaneous and agonist-induced contraction of human myometrium at term pregnancy, as well as to quantify the response to three prototypical agonists: 1) oxytocin, 2) vasopressin, and 3) phenylephrine. Uterine biopsies were obtained at the time of cesarean section from patients who delivered at or near full-term gestation. These preparations were used to measure isometric force development and [Ca2+]i levels with the luminescent calcium indicator aequorin. Concentration-response relationships were determined with respect to isometric force development in the presence of the agonist. [Ca2+]i-force relationships were determined with respect to spontaneous phasic contractions, as well as agonist-induced phasic and tonic contractions. The results provide evidence that the phasic nature of term human myometrium is due to 1) the resting [Ca2+]i level being less than the calcium threshold for contractions and 2) the inability of the tissue to maintain high [Ca2+]i levels for prolonged periods of time. In addition, calcium-independent mechanisms of regulation were suggested by the relatively minor calcium sensitizing action of oxytocin and the observation that relaxation of tonic contractions preceded the fall in [Ca2+]i levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.