Abstract
The first step towards ATP synthesis by the Ca2-ATPase of sarcoplasmic reticulum is the phosphorylation of the enzyme by Pi. Phosphoenzyme formation requires both Pi and Mg2+. At 35 degrees C, the presence of a Ca2+ gradient across the vesicle membrane increases the apparent affinity of the ATPase for Pi more than 10-fold, whereas it had no effect on the apparent affinity for Mg2+. In the absence of a Ca2+ gradient, the phosphorylation reaction is inhibited by both K+ and Na+ at all Mg2+ concentrations used. However, in the presence of 1 mM Mg2+ and of a transmembrane Ca2+ gradient, the reaction is still inhibited by Na+, but the inhibition promoted by K+ is greatly decreased. When the Mg2+ concentration is raised above 2 mM, the enzyme no longer discriminates between K+ and Na+, and the phosphorylation reaction is equally inhibited by the two cations. Trifluoperazine, ruthenium red and spermidine were found to inhibit the phosphorylation reaction by different mechanisms. In the absence of a Ca2+ gradient, trifluoperazine competes with the binding to the enzyme of both Pi and Mg2+, whereas spermidine and ruthenium red were found to compete only with Mg2+. The data presented suggest that the enzyme has different binding sites for Mg2+ and for Pi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.